Paradox
©
Fisana

Jump to content


- - - - -

how to build your own spot/Stick/Arc welder ,, cheap to free


  • Please log in to reply
7 replies to this topic

#1 Guest_jay pheno_*

Guest_jay pheno_*
  • Guest

Posted 17 July 2009 - 12:57 PM

[/B]VG1xVNpm7k8[B]
http://hackaday.com/...wn-spot-welder/
Spot welders are used in the fabrication of automobiles, PC cases, power supplies, microwave ovens, electrical junction boxes, Faraday cages, and various electronics. A spot welder is used because it produces a highly defined point of contact weld. The materials are welded without excessive heating, so working pieces are handled easily. The weld is also highly controlled and repeatable. In this how-to we cover the basics of a spot welder, and then show you how to build one from a microwave oven transformer.
A spot welder’s electrodes serve at least three functions. They transfer electrical energy to the material while also holding it together; this also controls resistance. The greater the pinch force the less the resistance, which results in decreased resistive heating. A lesser pinch force results in increased resistive heating. The electrodes also conduct heat away from the material, while in the off cycles, helping to cool and temper the weld. A resistive spot weld is commonly referred to as a ‘nugget’. Spot welders are generally confined to ferrous materials which somewhat limits their application range. Most produce a weld with low voltage and high current. The welder in this How-to operates from a secondary of 3vac. The primary is 120vac line voltage that should be treated with respect. The low voltage secondary makes the welder very safe, so the electrical shock hazard from the electrode is virtually non-existent. There is however the risk of burn due to the high temperatures as with any welder.
This particular welder is not intended to weld a body panel on your 1966 Jeep; it will not work well on material heavier than 20gauge sheet metal. The intended use is for small projects, for it is not capable of continuous operation. Possible uses are as follows: Welding electrode material for electrolysis cells. Working with the fine components of a vacuum tube. Building a light weight frame for a small robotic platform. Most of us have enough parts laying around to build a spot welder. If you have a microwave oven transformer (MOT) laying around, then you are half way there. On a related note, we had covered a microwave oven arc welder in 2006.
Posted Image
We also needed some heavy gauge copper wire. We used about four feet of 4AWG wire to build the spot welder in the photo. Other materials included scrap 2×6, 2×2, two copper screw type lugs, two copper welding cable lugs, two MIG welder tips, two 4″ x 3/4″ zinc plated corner braces, drywall screws, and three washers.
Posted Image
Pictured above is a working MOT. The first thing we had to do was remove the secondary coils. Namely the high voltage winding, and the low voltage winding. We used an angle grinder with cut off wheel while being careful not to cut the primary winding.
Posted Image
We cut the secondary flush with the MOT laminate core. Both sides of the MOT should be cut. Inspect the MOT for signs that the laminate has been welded. We have found that welded MOTs can handle a little more abuse than their sealed only counter parts. If possible try to keep the core insulation intact, where the secondary will be wound. Though it is not a show stopper if the insulation becomes damaged. The insulation makes it a little easier to wrap the heavy gauge secondary.
Posted Image
After removal of the secondary we had something that resembles the above photo. If the magnetic shunt material falls out be sure to replace it as it was before. The shunt keeps the core from transferring too much power to the secondary. A magnetic ballast if you will. The shunt acts to control the saturation of the core. A brute force project like this relies on such a shunt for proper operation.
Posted Image
Rewinding a MOT with 4AWG is no walk in the park. If you’ve damaged the core insulators, we suggest wrapping a layer of electrical tape in their place. This will help to avoid damaging the insulation on the wire as it is pulled through the core. Our experience is that 3-4 windings is plenty. After all, this spot welder relies on high current and marginal resistance. Not high voltage.
Posted Image
We were careful to ensure that the secondary coil was wrapped in a helical manner to complete the secondary.
Posted Image
We mounted the MOT and 2×2 to the 2×6 base. This particular build used 12″ 2×6 with two 7″ 2×2. These dimensions may or may not work depending on the physical size of your MOT. The only critical part here is keeping the wire length as short as possible.
Posted Image
After the lower jaw was mounted, we also attached the corner braces. It was found that a spare piece of 2×2 as a shim worked well to align the upper and lower jaw. After the upper jaw was aligned we attached it to the corner braces with screws. This formed the hinged portion of the jaw.
Posted Image
The picture above shows the MIG welder tip and the screw type copper lug. This is an improvement from an earlier model we had built. Initially, we used copper tubing with a hole and a piece of 6AWG grounding wire serving as the welding electrode. The grounding wire was held in place by a screw that threaded inside the copper tube perpendicular to the electrode. It was very crude, but it worked. This new method is much more practical.
Posted Image
Here are the two electrodes ready to be fixed to the lower and upper jaws. We double checked the MIG electrodes to make sure they were tight. A loose connection will take heat away from the weld nugget.
Posted Image
Evenly aligning the welding electrodes, we were careful to keep the upper jaw in the natural position where it was mounted. This maintained a flat contact area for the welding electrodes. After we were sure that the electrodes had been properly aligned, the jaws were marked. We then drilled a small hole. Since we mounted with the grain of the 2×2 the holes helped to protect from splitting the 2×2.
Posted Image
With the electrodes mounted, we cut the wire to proper length. We never cut the exact amount we need. We always cut more than we need. This rule of thumb should apply to all electrical wiring. After all it is much easier to cut off excess than wrap a new secondary.
Posted Image
We bent the wires in to the approximate positions in which they were to be assembled and stripped the wire in preparation for the crimp type welding lugs. It is a good idea to strip more than is needed here as well. Simply cut off excess after sizing up the lugs depth. Never crimp insulation with the lug. This will create a potential problem area due to the loss of conduction.
Posted Image
Using a good non insulation crimp tool to secure the wire. We inspected the crimp and gave it the tug test. Simply tug on the wire if it is loose it will pull out. It if doesn’t pull out then an adequate crimp suitable for high current has been made.
Posted Image
The crimped wires were attached to the welding electrodes with screws. We were careful not to over tighten the screws. If a drywall screw had stripped out of the wood, we would have had to use a larger wood screw in its place. After both welding electrodes were fixed to the jaws, we aligned the electrodes. Using pliers we bent the electrodes so that they contacted each other evenly. The electrodes should be fairly close already since they were aligned before drilling.
Posted Image
We opened the jaws and wired the primary to an electrical cord and then tested the secondary. If the breaker trips, check for the following:
  • The secondary is shorted (the jaws are closed)
  • The magnetic shunts are missing or not properly reinstalled
  • Faulty line wiring to primary or shorted primary
  • Too much load on the circuit of test or undersized breaker
We observed proper electrical wiring practices. It is also stressed that this is a welder and it should have a dedicated circuit as any other welder would have.
Posted Image
With the power physically disconnected we verified the welding electrode alignment with the material we intended to work on. Before connecting the power and performing an initial weld, we observed a few safety guidelines. This is a welder and will produce very high temperatures. Keep fingers away from the welding electrodes. Allow the material to cool prior to handling. Always wear eye protection. You may be interested in reading about spot welder parameters. There’s also the problem of combustible materials…
Posted Image
This Compaq used very thin aluminum to support the screen and connect the hinges. The metal broke and destroyed most of the lower plastic. We were able to make new supports from 22AWG stainless steel sheet metal. All the welds were made using the spot welder with a special power controller.
Dual transformer welder

http://www.instructa...WOAU7NFAHIWACS/
Posted Image
http://www.dansworkshop.com/electricity-and-electronics/homebuilt-arc-welder.htm :pirate:

#2 Hippie3

Hippie3

    DUNG DEALER

  • Founders
  • 40,642 posts

Posted 17 July 2009 - 02:13 PM

:thumbup:
luckily i already own one
but this might be handy someday.
thx!

#3 Guest_jay pheno_*

Guest_jay pheno_*
  • Guest

Posted 17 July 2009 - 03:06 PM

np ,, knowledge is power ,, or empowering ,,, i hope its empowering to someone ,,, was for me :pirate: !

#4 weeeeeee

weeeeeee

    humanoid

  • Expired Member
  • 1,846 posts

Posted 17 July 2009 - 03:12 PM

damn that looks pretty alright actually sweet as pictoral and build thanks for sharing

#5 nepenthes_ak

nepenthes_ak

    Wanderlust King

  • Expired Member
  • 511 posts

Posted 18 July 2009 - 08:54 PM

not gonna lie this is really cool.

But I wouldn't trust it, for anything than strictly at home use.

#6 bugs

bugs

    Are we having fun yet?

  • OG VIP
  • 3,260 posts

Awards Bar:

Posted 19 July 2009 - 10:54 AM

Damn clever, using a micronuke transformer.
I bet it takes some practice to get a decent weld, though.
Now with the addition of a pressure switch and timer......
Wish I had room to play with this kind of shit.

#7 buteo

buteo

    Imbicilzzzz

  • OG VIP
  • 1,567 posts

Posted 19 July 2009 - 10:56 AM

Wow man yet another thing you have found....u are a bot! :). Ima use you as a search engine. Fuck google,,,use jay-pheno!

#8 Guest_jay pheno_*

Guest_jay pheno_*
  • Guest

Posted 19 July 2009 - 11:54 AM

Damn clever, using a micronuke transformer.
I bet it takes some practice to get a decent weld, though.
Now with the addition of a pressure switch and timer......
Wish I had room to play with this kind of shit.



speaking of timer and pressure switch ,, if you look in building one of these youll see alot of folks online takeing it to that next step ,, adding in microcontrolers to so you can set it for the type of metal your welding ,

ive only used one of these for makeing antenna's and repairing battery tabs , but useing one of these setup with say 6 or 8 transformers instead of one, will make it beefy enough to weld anything ! :pirate:




Like Mycotopia? Become a member today!